,甚至难逃破产厄运。对市场的响应速度而言,牛鞭效应表明,越是处于供应链后端,企业响应速度越慢。其结果是,当市场需求增加的时候,供应商往往无法支持制造商;而当市场需求放缓时,供应商则往往继续过量生产,造成库存积压。由于牛鞭效应,伴随着过量生产的是整个供应链的生产能力过度膨胀。一旦经济不景气,整个供应链被迫大幅削减人员,关、停、并、转设备。
以笔者所在公司为例,到2003年,人员从2000年高峰期的5000余人缩减到2200人左右,总部的生产厂房、办公场所从8个缩减为4个。公司的供应商则经历了更加剧烈的苦难历程,大多数供应商的人员减半,营业额只有高峰期的13,设备生产能力利用率只有约30%。
对整个宏观经济而言,牛鞭效应可以解释为什么有些行业比另一些行业提前衰退,或滞后复苏。拿半导体行业而言,供应链前端的芯片先于后端的设备制造业衰退;而后者则滞后于前者复苏。而对于单个企业而言,当经济复苏的时候,不但要动员自身的生产能力,更重要的是动员各级供应商。这是因为由于牛鞭效应,后端供应商往往受到更大的经济影响,面临更大的财政压力,从而更难也更不情愿扩张生产能力。在行业腾飞、经济景气时,往往由于后端供应商没法及时扩张而影响整个供应链的销售业绩。
四大成因鉴于牛鞭效应的重大影响,多年来学术界和工业界都在积极研究。根据斯坦福大学李效良教授及其同事的研究,牛鞭效应有以下四大成因:
多重需求预测当处于不同供应链位置的企业预测需求时,都会包括一定的安全库存,以对付变化莫测的市场需求和供应商可能的供货中断。当供货周期长时,这种安全库存的数量将会非常显著。例如一美国计算机制造商预测到某型计算机的市场需求是10万台,但可能向中国的供应商下11万台的零件订单;同理,中国计算机零件供应商可能向其供应商定购12万台的原材料。以此类推,供应链各节点库存将逐级放大。此外,有些预测方法也会系统地扭曲需求。拿移动平均法为例,前三个月的趋势是每月递增10%,那第四个月的预测也将在前三月的平均值上递增10%。但市场增长不是无限的,总有一天实际需求会降低,其间的差额就成了多余库存。如果供应链上各个企业采用同样的预测方法,并且根据上级客户的预测需求来更新预测,这种系统性的放大将会非常明显。批量生产订购为了达到生产、运输上的规模效应,厂家往往批量生产或购货,以积压一定库存的代价换取较高的生产效率和较低成本。在市场需求减缓或产品升级换代时,代价往往巨大,导致库存积压,库存品过期,或二者兼具。例如笔者所管理的一家加工设备机箱的小供应商,直到宣布关门停业数月后还没有用掉生产积压下的数种机箱,主要是因为大批量生产。
价格浮动和促销厂家为促销往往会推出各种促销措施,其结果是买方大批量买进而导致部分积压。这在零售业尤为显著,使市场需求更加不规则、人为加剧需求变化幅度,严重影响整个供应链的正常运作。研究表明,价格浮动和促销只能把未来的需求提前实现,到头来整个供应链中谁也无法从中获利。
非理性预期如果某种产品的需求大于供给,且这种情况可能持续一段时间,厂家给供应商的订单可能大于其实际需求,以期供应商能多分配一些产品给它,但同时也传递虚假需求信息,导致供应商错误地解读市场需求,从而过量生产。随着市场供需渐趋平衡,有些订单会消失或被取消,导致供应商多余库存,也使供应商更难判断需求趋势。等到供应商搞清实际需求已经为时过晚,成为又一个“计划跟不上变化”。这种现象在2000年前后的电子行业得到充分体现,整条供应链都深受其害,积压了大量库存和生产能力,前面提到的思科就是一个典型例子。
基于上述种种成因,除了批量生产与生产模式有关外,别的都可以通过整个供应链范围的信息共享和组织协调来解决。例如企业之间共享市场需求信息,避免多重预测,减少信息的人为扭曲;在价格政策上,制造商应该固定产品价格,放弃价格促销,并与零售商共同实行“天天低价”;在理性预期上,供应商在产品短缺时应以历史需求为基础分配产品,从而避免用户单位虚报需求。在生产方式上,供应商应采用精益生产,使达到最佳经济生产批量的数量减小,从而减少供应链库存,提高对市场需求变化的响应速度。
不论如何,因为供应链本身就有缺陷,只要有需求的变化和订货周期的存在,必然会引起需求预测的失效。供应链的层次越多,这种矛盾就越明显。但我们可以在管理上避免一些非理性的行为,比如为避免短缺而发出过大的订单从而误导了上游供货商,由此给供应链带来蝴蝶效应一样的灾难性后果。诸如此类一时兴起的举动只要尽量控制,就可以减轻“牛鞭效应”所带来的恶果。
信息发布:广州名易软件有限公司 http://www.myidp.net