第一章概述随着电力工业的发展,变电站一次设备二次保护对接地装置的要求在不断提高。接地装置是确保电力设备安全运行及其工作人员人身安全的重要设备。电力系统中对接地装置的要求越来越严格,变电所接地系统直接关系到变电所的正常运行,更涉及到人身与设备的安全。然而由于接地网设计考虑不全面、施工不精细、测试不准确等原因,近年来,发生了多起地网引起的事故,有的不仅烧毁了一次设备,而且还通过二次控制电缆窜入主控室,造成了事故扩大,故接地网对电力系统的安全稳定运行起到非常重要的作用。变电所的接地好坏直接关系到设备和人身的安全,因而愈来愈受到人们的重视,因变电所的接地网不但要满足工频短路电流的要求,还要满足雷电冲击电流的要求,以前由于接地网的缺陷,曾发生了不少事故,其原因既有地网接地电阻方面问题,又有地网均压方面的问题。随着电网的发展,变电所内微机保护综合自动化装置的大量应用、这些弱电元件对接地网的要求更高,地电位的干扰对监控和自动化装置的影响不得不引起人们的重视,因此,为了保证变电所接地网的可靠性,必须对接地网存在的问题进行改进,并对今后在接地设计与改造方面应该注意的问题进行深入探讨。第二章变电所接地网存在的问题及改造2.1变电所接地网存在的问题2.1.1接地网均压问题1、在接地网设计时只注意了工频接地电阻而忽略了地网的均压和散流问题,所以有些运行多年变电所接地网的均压不好,特别是横向电位分布不均,电位梯度较大。2、对于有些变电所接地设计,设备到哪里,水平接地带立连到哪里,或只用长孔地网而很少用方孔地网,再加上敷设接地网的施工单位存在偷工减料,不按图施工等问题,造成接地网很不完善。3、接地网在施工中水平接地极埋深大部分不足,有的甚至浮在地表面,因此,由于地网均压不好,一旦发生接地短路就有可能引起局部电位升高产生高压向控制和保护电缆反击,使低压元件烧坏。2.1.2接地网与设备连接问题1、设备的接地引下线截面偏小或在地下与地网的连接处经过长时间腐蚀造成被锈蚀断;设备没有明显的接地引下线,而是通过混凝土构架的内部的钢筋接地,而混凝土构架的内部钢筋不是在上部就是在下部开路;设备接地短路时因满足不了短路电流的热稳定而被熔断。2、在厂区扩建时没有扩建新的地网,而是把新增设备的接地通过电缆沟内的接地带与原地网连接,而电缆沟内的接地带又连接不可靠或长期运行在潮湿和有腐蚀气体的环境中,因腐蚀而造成开路;3、通过螺丝连接的接地线经过长期的锈蚀或松动造成电气上的开路;由于设备的接地与地网通常发生在设备的接地短路时,设备外壳所带高压容易让低压二次回路反击,烧坏二次电缆元件和元器件,使二次保护和控制失灵,使故障线路不能及时切除,使事故扩大,在使用微机保护和综合的场所会造成严重的地电位干扰而使微机保护和综合自动化系统失灵,造成保护的吴动或拒动,而使事故扩大。设备外壳所带较高的接触电势还将威胁运行人员的安全。防雷设备的接地不良,要么会影响防雷设备的正常动作,要么会在雷电流入地时产生较高的反击过电压危及设备和人身安全。2.1.3接地网的腐蚀问题腐蚀的原因归纳起来有以下几种:1、接地网的水平接地体预埋深不够,按相关国标和行业规定水平接地体的埋深至少应达到0.6m,而在实际工程中发现有的水平接地体的埋深不够,有的甚至浮在地表,由于上层土壤含氧量高,加速了接地体的氧化,且上层土壤易受气候的影响,接地电阻值不稳定。2、在扩建时,不扩建地网把电缆沟内的均压带作为设备接地的主要干线,由于电缆沟内的均压带长期运行在阴暗潮湿的环境中,特别是有些电缆沟长期积水,再加上未能定期的进行防腐维护,这就加速连接地的腐蚀,是造成设备或设备单元失地的主要原因;3、在施工过程冲地网接头焊接质量差,有虚焊假焊或气泡存在;4、丘陵地区的变电所,风化石或沙石土壤透气性好,土壤中含氧量高,加速了接地体的腐蚀;5、有害气体腐蚀,以及对设备接地引下线和接头没有采取防腐保护措施或没有定期进行维护。2.1.4接地网接地电阻问题水平接地体或接地装置埋深不够,、工频接地电阻普遍满足不了R≤2000I的要求,且未采取任何均压和隔离措施,这在多年运行的变电站中尤其突出.其主要原因有:1、在原设计时电网容量较小,当随着电网的发展,电网容量迅速增大接地短路电流也迅速增大,接地网没有随之进行相应的降阻改造;2、接地网在施工时没有按要求铺设足够的水平和垂直接地体;3、接地体在地下经过长期的腐蚀,在接地体表面产生了一层铁锈层,影响了接地体与周围土壤的有效接触,使接触电阻增大;4、变电所扩建时没有对接地网进行扩建。2.2变电所接地网改进措施1、对于运行10年以上的接地网,宜用工频大电流法进行接地电阻、地面电位分布、设备接触电压试验和设备与地网的连通情况试验;对试验发现有问题的地网,应进行开挖检查,检查接地网的埋深,锈蚀和焊接头的连接情况,要重点检查设备接地引下线与地网的连接,因为这些地方由于腐蚀电位差的存在,最易发生电化学腐蚀,2、对设备接地引下线及地网水平接地体的截面进行热稳定校核,不满足要求的要及时进行整改。35KV及以上电压等级的设备接地线要用明线引下,不能通过混凝土构架接地,对充油设备,主设备要进行双接地,双接地要从设备的两边引下,并与地网不同点相连,以加强设备连接的可靠性和改善散流情况。3、在设计新的地网和改造老地网时,宜考虑电网以后5―10年的发展,留有适当的发展余地。接地网的使用寿命应大于地面设备的使用寿命,因地面电气设备可能更新得较快,而接地网不存在更新的问题。4、接地网的水平接地体预埋深度应达60CM以下,有些特殊的地方预埋深度应达0.8M或1M以下,用细土回填并分层夯实,严禁用砂石或建筑垃圾回填。5、设备接地引下线和电缆沟内的均压带要定期进行防腐处理和维护。6、在电缆附近辅设与电缆沟平行的水平接地体,每隔6―8M与电缆沟内的接地带连接一次,以保证电缆沟内的均压带接地和均压的可靠性。7、在主变中性点、油开关、避雷器和构架避雷针的接地处和地网的各交叉点设置垂直接地极加强集中接地,改善地网的冲击特性。8、变电所扩建时要把接地网一并考虑在内,扩建的地网与原地网应多点可靠连接,不能简单地接进电缆沟的接地带了事。地网的各焊接头焊口质量要严格把关,对焊口要进行相应的防腐处理。2.3接地网接地设计与改造1、在接地设计时一定要勘测了解变电所处在位置的地质结构和土壤电阻率,土壤电阻率ρ值是接地设计和计算的重要参数,在接地装置设计之前应认真进行勘测,因大多数情况下土壤都是不均匀土壤,即土壤的电阻率沿水平和垂直方向不均匀分布,这时就需要在水平方向上多测一些点以测出沿水平方向上的不同分布,同时还要测出不同深度的土壤电阻率,如采用四极测量法。可改变不同的测试距离α。即可算出不同深度的土壤电阻率。因为测试结果基本上保持着0.75α深层土壤电阻率的关系,对于新建变电所可在变电所接地装置布置地点进行测量,对于老站改造可在旁边类似的土质地方测试。而实际中却发现,有些在原地网上面测试时,结果测试值严重偏小,这是因为如在接地装置上方测量,则因下方有接地体的影响而使结果偏小,这样就会使接地设计产生很大的偏差。测试一定要到现场实测,不要凭资料介绍的土质进行估算,因为同样土质在南方和北方相差甚远,如不现场实测则会由于取值和实际值相差较大而达不到设计目的。2、根据变电所的规模,应用电网的接地短路电流来计算通过接地网的入地短路电流值,从而确定接地网的接地电阻值和接地线热容量。关于流经接地装置的入地短路电流,因为这个电流直接关系到接地电阻,接地线的热稳定计算及设备接触电压和跨步电压的计算。所以正确计算流经变电所接地装置的电流非常重要。计算流经接地装置的入地短路电流,采用在接地装置内、外短路时经接地装置流入地中的最大短路电流对称分量的最大值,该电流应按510年发展后的系统最大运行方式确定,并考虑系统各中性点的短路电流分配,以及避雷线的分流。计算时首先应按系统最大运行方式时的短路阻抗算出在单相接地短路电流值,然后根据内、外短路电流计算流过接地装置的电流I=(Imax-IN)(I-Ke1)I=In(I-Ke2)式中I流经接地装置的陆地电流。A;Imax接地短路时的最大接地短路电流。A;In |