经过多年的改造,现有污水处理系统的潜力已基本得到发挥,但是NH3-N和COD却一直无法达标。因此在
4.1实验装置
本着节省环保投资的原则,按照现场生化处理系统的尺寸,按比例缩小构建了缺氧一好氧实验装置,以期待实验结果应用于原系统改造。待处理的废水在调节池混合后用泵打入缺氧生物滤池,然后经过好氧活性污泥曝气、澄清过滤后外排。工艺流程如图2所示。
4.2实验
实验分为三个阶段进行,第一阶段主要是选育降解微生物和脱氮微生物,向实验反应器中投加和驯化;第二阶段调整运行参数争取出水达标;第三阶段进行各种条件下的数据积累。
4.2.1降解菌的选育和驯化
由于废水可生化性较差,CN比失调和在去除高浓度氨氮的压力下,如果曝气池系统活性污泥得不到足够的营养,异氧型微生物会逐渐消耗自身,导致污泥矿化,污泥浓度下降。在此特殊情况下为保证微生物含量,不能用常规的微生物发酵的方法进行,实验室选育的高效降解菌在混合培养和投加到处理系统中时,只能循序渐进,反复驯化。如果用常规的丰富培养基大量培养降解菌,投加到废水中降解菌的降解活性会下降,甚至完全不能生长。
4.2.2影响处理系统效果的因素
生物处理法的关键是微生物。废水处理系统的酸碱度、有毒物质浓度以及处理的温度对微生物均会产生强烈的影响,导致处理效果发生很大的改变。在文献或某些废水处理工艺中,PH值要求为6刃,而实验中发现PH在8.5则的废水对废水处理系统会产生较强的负面影响;在水质恶劣的情况下,分隔的缺氧池可以并联、串联或交替灵活运行,充分发挥生物膜结构对废水中有毒物质的吸附、降解和减毒的缓冲作用;在受到高浓度有毒物质冲击中毒后,缺氧池表层的填料可以更换,以减轻毒害物质对处理系统的毒害作用;同样温度对去除氨氮的影响也十分重要。处理气温下降到2~15℃时,硝化细菌活性大幅度下降(表4)。
4.3污水处理系统改造
根据实验情况,瑞系统实际,对系统进行深度必造。
4.3.1应用生物强化技术
常规废水处理系统中高效降解菌和硝化菌存在的数量不多,为了用于改造系统,利用饥饿育种、选择性压力等方法选育能有效分解废水中难降解有机物的微生物共7属117株,其中包含了较少见报道的杂环化合物降解菌;还富集、筛选了脱氮的硝化细菌株。
由于难降解、有毒的工业废水处理系统中的微生物的数量和增殖速度都远远低于一般无毒、高浓度有机废水处理系统的微生物,经过投加和驯化高效降解菌和硝化细菌,系统中缺氧池填料和活性污泥中培养的微生物的数量达到了较高的数量级,微生物的数量在低温季节仅比夏季低一个数量级。系统的处理效果有了较大的提高。
4.3.2进一步改进缺氧一好氧处理工艺
目前国内缺氧一好氧工艺中缺氧池大多数采用由下部进水的方式,这种水解一酸化处理工艺对高浓度有机废水具有较为独特的优点。但当处理含有还原型化会物较多的石油化工废水生物处理的反应则应以好氧型反应为主。
信息发布:广州名易软件有限公司 http://www.myidp.net