1.3试验方法
新拌混凝土拌合物和易性用混凝土泌水率来评定;新拌混凝土测定按照GBJ80—1985用气压式含气量测定仪测定。混凝土强度试件尺寸为100mm×100mm×100mm,试件按常规方法搅拌振动成型,空气中静养ld后拆模,进入标准养护室水中养护至各个龄期,进行抗压强度测定并转换为标准试件强度。混凝土抗冻性试验按GBJ82—1985《普通混凝土长期性能和耐久性能试验方法》中快冻法的标准来测定,即试件尺寸为100mm×100mm×400mm,每组3块,试件经标准养护24d后,再在水中浸泡4d,然后进行抗冻试验。混凝土中心冻结温度为-15~-19℃,融化温度4~8℃,每个冻融周期为3~4h,每隔25次冻融循环测定一次混凝土重量变化与动弹性模量。混凝土动弹性模量采用共振法测定,试验共进行100次冻融循环。
2试验结果与分析
2.1掺加不同引气剂后混凝土的性能变化
通过表面张力、气泡稳定性和液膜强度的测定初选10#引气剂为最佳组成,但其测定环境为25℃的水溶液,与混凝土介质环境下差别迥异。为了验证此合成方法的可行性,选定8#、9#、10#、11#四种编号的引气剂溶液,掺加于混凝土介质中,测其含气量及新拌混凝土性能的变化。
2.1.1不同引气剂对混凝土含气量的影响
表2中列出了掺加不同引气剂后混凝土含气量的变化情况。从表2中可看出,在相同引气剂掺量下,10#引气剂引入的含气量最大,在掺量为0.036%时,含气量达到5.1%;9#引气剂仅次之。这与本文在第一部分中所研究的结果基本相符。
2.1.2不同引气剂对新拌混凝土性能的影响
引气剂可引入大量密封的球形气泡,在混凝土拌合物中起到滚珠的作用,并且大量气泡的存在增加了浆体体积、浆体黏度和屈服应力。在试验过程中发现,掺有引气剂的新拌混凝土的和易性、塑性和粘聚性得到显著提高,离析和泌水现象显著降低,降低程度因引气剂种类而异。如表3所示,掺加不同引气剂后泌水率的变化。由表3可知,10#引气剂对降低混凝土泌水率作用最显著。
综上所述,10#引气剂相对于其它引气剂而言,性能确实较优,与本文在第一部分所研究的结果相符。因此,最终确定10#溶液为引气剂最佳组分,并且得出本文第一部分所描述的研究方法切实可行。
2.210#引气剂对混凝土强度的影响
气泡的产生使得浆体的有效面积减少,因而造成了混凝土的抗压强度降低,降低程度与含气量的多少以及气泡分布情况密切相关。小而均匀的密封气泡对混凝土强度损失较低,反之则较大。因此,强度损失可以作为引气剂品种的优劣的一个评价标准。
图2为同水灰比条件下,含气量对抗压强度的影响关系曲线。由图2可知,无论是养护7天还是28天的混凝土强度均随着含气量的升高而逐渐降低;当引气剂掺量为0.036%时,含气量达到5.1%,强度损失小于10%。按GB8076—1997的标准,其在强度要求方面达到了一等品的标准。
2.310#引气剂对混凝土的抗冻融性的影响
表4列出了含气量在1.1%和5.1%时,混凝土抗冻试验试件的相对动弹模量。由表4可知,掺加10#引气剂后混凝土的抗冻性明显提高,100次冻融循环后相对弹性模量为97.14%,冻融破坏对其影响较小;而不掺加引气剂的混凝土相对动弹模量仅为67.50%,几乎被破坏。主要由于引气剂引入微气孔在冰冻过程中能释放毛细管内的冰晶膨胀压力,避免生成破坏压力,减少和防止冻融的破坏作用,从而提高混凝土的抗冻性。
3结论
(1)测定8#、9#、10#、11#四种引气剂在混凝土中的含气量及泌水率的变化,再次证明10#溶液为引气剂最佳组分,其结果与本文第一部分中的试验结论一致。
(2)当10#引气剂掺量为0.036%时,可使新拌混凝土的含气量达到5.1%,此时混凝土强度损失小于10%。按GB8076—1997的标准,其在强度要求方面达到了一等品的标准。
(3)10#引气剂能显著提高混凝土的抗冻融性,基准混凝土(不掺加引气剂的混凝土)经过100次冻融循环后相对动弹模量为67.50%,而含气量为5.1%的引气混凝土经过100次冻融循环后相对动弹模量为97.14%,耐久性损失较小。
| |
| |
原作者:李兴翠,邓德华,刘赞群,何富强 |