3.1地板送风
影响舒适性的因素较多,其中送风速度、送风温度及空气品质对室内环境的舒适性影响较大。
3.1.1送风速度
地板送风是射流送风的一种,送风散流器的形状和结构决定气流的扩散性能和湍流状态,故在出风口2.5m范围的速度场主要由散流器类型决定。为了防止人员有吹风感,送风气流的速度不能超过3m.对于旋流式散流器,出风气流受扭转叶片的影响形成涡流,使气流扰动增加,出口风速减小,避免了产生吹风感。同时,送风气流与室内空气混合充分,人员活动区内温度场分布均匀。
空调负荷送风主要负担工作区负荷,送风量较小送风负担全部室内负荷,送风量较大
送风速度送风气流速度较低,一般小于0.2m送风气流速度较高1.5~2.0m
送风温度送风温度18~20℃
送风温差2~4℃送风温度15.5~18℃
送风温差6~8℃
气流组织推荐全部使用室外新风,以保证空气品质
下区存在温度梯度,上区温度比较均匀
室内空气品质好利用部分室内回风,气流掺混、扰动较大
室内气流温湿度分布比较均匀
室内空气品质较好
3.1.2送风温度
由于人脚对温度的敏感性较强,通常地板送风的送风温度较高,一般为18℃,送回风温差为8-10℃。
3.1.3空气品质
3.2工位送风
工位送风也属于地板的一种,室内大环境的温度及污染物浓度分布与上述地板送风类似,在此不再赘述。由于工位送风的送风参数可以根据需要进行调节,实行区域控制,它的舒适性较一般高于地板送风。
根据ASHRAE舒适度标准,核心区域的空气流速必须限制在:冬季不超过0.15m,夏季不超过0.8m.由于送风口在人员的头部附近,送风温度高于一般的地板送风,因此,空调系统的蒸发温度相应可以提高,故冷水机的性能系数(COP)增加,研究表明,蒸发温度升高1℃,离心式冷水机的COP增加3.1%.工位送风在满足舒适要求的同时,也降低了系统的能耗。
3.3置换通风
置换通风系统中,温度梯度和送风速度是两个比较关键的因素,为保证人体热舒适性要求,必须严格控制工作区的温度梯度和气流速度大小。
3.3.1送风速度
置换通风的送风散流器一般位于侧墙下部,为避免产生吹风感,必须严格控制送风速度。散流器出口处的空气流速主要取决于于送风量,气流阿基米德数和散流器类型。
当送风量增加时,散流器出口附近气流的平均速度增加,使得靠近风口处的人有强烈的吹风感。
散流器的结构类型决定了气流在贴地气流层和整个工作区的速度分布,当送风气流的速度波动较大时会使人有吹风感,为了避免这种危险,送风射流必须加以控制。Nielsen通过实验分析了七种不同类型落地散流器对送风速度的影响,给出了近地面气流最大速度的计算公式,并指出:不同送风量下,对于近地面气流速度,弧面散流器较平面散流器要小,高开孔率的散流器较低开孔率的要小。
3.3.2温度梯度
由于置换通风系统在垂直方向上存在明显的温度梯度,根据ASHRAE55-1992热舒适性度的要求,应减小室内温度梯度。研究表明温度梯度的大小受送风量和送风速度的影响较大,送风量增加,温度梯度减小。
文献[8]通过CFD方法对一个6m×4m×3m的办公室进行了模拟,房间负荷50Wm2,送风温度22℃,适当增大送风速率,室内垂直温度梯度明显减小,有助于提高热舒适性。 根据ISO7730的PMVPPD评价指标,PPD应该低于10%,在置换通风系统中,减小送风速量或提高送风温度都可以降低PPD.
3.3.3室内空气品质评价
由于置换通风热力分层的存在,工作区产生污浊空气被热羽流及时带入上区,避免形成横向扩散;进入上区的气流也不会再回流到工作区,因此置换同风度热力分层高度应高于工作区高度,从而保证了工作区较好的空气洁净度。置换通风的换气效率通常介于0.5~0.67,通风效率介于100%~200%.而混合通风理想换气效率只有0.5,当发生短路时还要低,通风效率一般也只有50~70%;
实测数据表明,对于一个9000m2的办公建筑采用置换通风后,冷负荷比混合通风减少了25~30%,送风量减少了30%.对于冷负荷较大的建筑,采用置换通风系统结合冷却顶板的辐射作用,最大负荷可增至100Wm2.与传统混合式系统相比,置换通风顶板冷却系统可节能37%.
结论地板送风室内温度均匀一致,污染物浓度较小,可以满足机房、办公室和实验室等散热设备多、人员密集场合的热舒适性需求;工位送风以其个性化的送风方式及灵活调节的优点,更适宜现代办公建筑;置换通风室内空气上下分区,通风效率和换气效率较高,可用于办公室、会议室和剧院等高大空间空调系统。
信息发布:广州名易软件有限公司 http://www.myidp.net