火灾模拟软件选取 | ||||||||||||||||
在火灾模拟中,影响模拟结果准确性的因素比较多,如所建模型和实际对象的接近程度、网格的划分方法、网格的数量、网格尺寸、湍流模型的选择、各种计算假设等因素都会对模拟结果产生影响。同时,各个软件都有自己的优缺点和适用范围,对某一工程设计,如性能化设计项目,选择最合适的软件进行火灾模拟是一比较重要的问题。 一、火灾模拟 在火灾模拟中,影响模拟结果准确性的因素比较多,如所建模型和实际对象的接近程度、网格的划分方法、网格的数量、网格尺寸、湍流模型的选择、各种计算假设等因素都会对模拟结果产生影响。 (一)概述 火灾数值模拟是火灾研究的重要内容之一,但由于火灾现象的复杂性,近几十年来才建立起描述火灾现象的实用数学模型。火灾模型主要分为确定性模型和随机性模型。 火灾数值模型主要有专家系统(ExpertSystem)、区域模型(ZoneModel)、场模型(FieldModel)、网络模型(NetworkModel)和混合模型(HybridModel)。场模型也即CFD模型,主要是利用计算流体动力学(CFD)技术对火灾进行模拟的模型,由于CFD模型可以得到比较详细的物理量的时空分布,能精细地体现火灾现象,加之高速、大容量计算机的发展,使得CFD模型得到了越来越广泛的应用。 目前用于火灾模拟的CFD模型主要有:FDS、PHOENICS、FLUENT等。FDS是专门针对火灾模拟而开发的CFD软件,简单易用。因此,在火灾模拟中应用最为广泛。而PHOENICS和FLUENT是计算流体力学的通用软件,将其用于火灾模拟需要有较强的流体力学背景。因此,应用较少。目前,国内外对FDS的研究比较多,而对于PHOENICS和FLUENT在火灾模拟方面的应用研究则较少,对各个软件的对比研究更少。 在火灾模拟中,影响模拟结果准确性的因素比较多,如所建模型和实际对象的接近程度、网格的划分方法、网格的数量、网格尺寸、湍流模型的选择、各种计算假设等因素都会对模拟结果产生影响,怎样才能使模拟结果更加准确、可信是一个急需解决的问题。同时,各个软件都有自己的优缺点和适用范围,对某一工程设计,如性能化设计项目,选择最合适的软件进行火灾模拟是一比较重要的问题。因此,为了能够更好地利用CFD模型进行火灾模拟,有必要对他们进行系统研究。 验证(veriifcation)与确认(validation)是评价数值解精度和可信度的主要手段。长期以来,CFD工作者对CFD软件的验证与确认工作一直没有给予足够的重视。因此,对于计算结果的可信度,CFD研究人员并不能给出明确的回答。这使得CFD软件的使用者对CFD也持一种矛盾的心态,既想利用CFD这种快捷经济的设计工具,又对CFD的计算结果心存疑虑。如果有条件,可以结合数值计算和模拟实体火灾的方式,进一步验证模型的可靠性。 (二)选取 从软件易用性来看,火灾专用模拟软件相对简单,在应用中不需要作复杂设置,使用者只需掌握火灾基本知识即可得到合理的结果,而通用CFD软件对使用者要求较高,使用者需要对流体力学有深入了解,才能得到合理结果,因此,一般火灾模拟选择专用软件为宜。 利用火灾模型进行数值分析前,应着重考虑该模型对所模拟问题的适用性及预测能力,一般情况下,需要事先利用相关试验(已有其他人员进行的试验或自己进行相关试验)对模型进行确认研究。 从模拟准确性来看,火灾专用模拟软件由于是专门针对火灾开发,在概念模型层面相对于通用软件更接近于真实模型,其数学模型更能反映火灾过程,因此,一般情况下,建议选择火灾专用软件,除非在专用软件无法模拟的情况下才选择通用软件。 使用火灾专用软件时,应着重考虑网格独立性、边界条件设置对模拟结果的影响,使用通用软件时,还应考虑湍流模型、燃烧模型、辐射模型的选择。 火灾模型的验证和确认应包含其对各类火灾参数的预测能力研究,如火场温度、热辐射通量、反应产物的浓度变化(着重研究CO、CO2、烟密度等)、火场能见度等。 对于通用的CFD软件,如PHOENICS、FLUENT、CFX等,由于其发展比较成熟,其程序一般能够比较准确的反应其所确立的概念模型,因此,对这类模型可以着重于确认研究;对于专用火灾模拟软件,如FDS等,已经进行了较多的确认和验证工作,对于比较常见的火灾场景,如建筑室内火灾等,可以直接用来模拟分析,而对一些特殊的场景,如火灾在狭长双层玻璃幕墙内的蔓延模拟,还需进行进一步确认研究;对于自行编制的火灾模拟程序,模型的验证工作是至关重要的,应确保程序能够准确反映概念模型。 用Steckler房间火试验,对PHONEICS和FLUENT进行了确认研究,就该类实例来说,FLUENT的准确度要高于PHENICS,但就工程应用来说,在选择合理的湍流模型、辐射模型,并经过网格独立性检验后,两者的模拟结果一般可满足工程需要。 火灾发展具有确定性和随机性的特点,火灾试验的影响因素较多,在选择确认试验时,应尽量选择可重复性强的试验,并应注重采用不同火灾场景下的火灾试验对其进行确认研究,以便更好地检验模型的可信度。 二、疏散模拟 当前世界上开发的人员疏散软件数目众多,据统计,有文献记载的疏散软件有22个,其他未公开的也不在少数。所以,在选用模型时一定要结合有待解决的实际问题与模型的适用性来进行选择。 (一)概述 建筑防火设计的主要目标之一是确保人身安全。建筑安全疏散的性能化设计,是要求所设计的疏散设施能够保证建筑中的全部人员有足够的时间安全疏散到安全的地方。评价指标包括建筑的安全出口、疏散楼梯的宽度、疏散距离是否满足建筑内使用人员的疏散需要,人员的疏散所需时间是否大于火灾条件下的可用疏散时间。 安全疏散时间判据,主要按照火灾发展与人员疏散时间为同时沿一条不可逆的时间线进行,保证建筑物内人员安全疏散完毕所需时间必须小于火灾发展到危险状态的时间。 火灾中人的疏散过程是在人的意识干预下,感知、认知火灾和环境信息与行为决策以及执行决策的过程,是一种在时间压力下的人体位移。由于人的行为受到年龄、身高、体重、敏捷度、习性、行动能力等心理与生理状态和文化背景与受教育程度的影响,十分复杂,同时人员在建筑内的实际状况以及建筑空间特性,如人员的分布情形、熟悉环境的程度、人数及其组成和楼梯或出口的宽度、照明、走道宽度、数量、建筑高度等都对人员疏散结束所需时间和可用于人员疏散的时间有很大影响。 人员疏散时间为火灾探测报警时间、人员预动时间与人员疏散运动时间之和。在计算疏散运动时间时,通常采用1.5~2的安全系数来考虑设计计算中的不确定性因素。 在人员安全疏散的研究方面,由于对所采取的措施是否能达到性能化设计的预期目标,同时如何对保证人员生命安全的目标进行合理的评价都缺乏科学依据,所以全世界在这方面的研究都处于起步阶段。人员疏散软件方面,有关研究人员在不断加大这方面软件的研究开发力度。国外从20世纪80年代初开始就展开了人员疏散基础数据及疏散模拟软件方面的研究,并把疏散研究的成果及时的应用到了建筑性能化设计中,我国也于近年来展开了这方面的研究。 (二)疏散模型分类 人员疏散计算方法主要有两种:水力模型和人员行为模型。 1.水力疏散模型 最常用的方法是水力疏散模型,它通过将人在疏散通道内的走动模拟为水在管道内的流动来进行计算。这一方法的缺点是它完全忽略掉了人的个体特性,而将人群的疏散作为一种整体运动。水力疏散模型通常对人员疏散过程作如下保守假设: 1)疏散人员具有相同的特征,并且都具有足够的身体条件疏散到安全地点; 2)疏散人员是清醒的,在疏散开始的时刻一起井然有序地进行疏散,且人员在疏散过程中不会中途返回选择其它疏散路径; 3)在疏散过程中,人流的流量与疏散通道的宽度成正比分配,即从某一出口疏散的人数按其宽度占出口总宽度的比例进行分配; 4)人员从各个疏散门扇疏散且所有人的疏散速度一致,保持不变。 2.人员行为模型 人员行为模型模拟人在火灾中的行为,综合考虑了人与人、人与建筑物以及人与环境之间的相互作用。这类模型能够从一定程度上反映火灾时个人的特性对人员疏散的影响,但由于火灾中人的反应与行为仍旧是一个较新的领域,对其定性研究较多,而定量的研究成果很少,因此在选用该类模型时要慎重考虑它的适用性,以经过实际疏散实验或演习验证的模型为首选。 当前世界上开发的人员疏散软件数目众多,据统计,有文献记载的疏散软件有22个,其他未公开的也不在少数。所以,在选用模型时一定要结合有待解决的实际问题与模型的适用性来进行选择。下面将通过分析这些人员疏散模型的功能与特点,对这些软件进行适当分类。 1)一般分类 疏散模型在处理疏散的一般问题时,均采用了三种不同基本方法:优化法、模拟法和风险评估法。 优化法假定人员以最有效的方式进行疏散,而不考虑外部环境的影响及非疏散行为。通常,模型认为人员选择的疏散路线是最佳的。这一类模型适用于大量的人群或将所有人员当作一个有共同特性的群体来考虑的情况,而不考虑个体行为。 模拟法试图表现实际的疏散行为与运动,不仅要得到准确的结果,而且要反映疏散时选择的疏散路线及人员所做的决定。由于各个模型在考虑人员行为时的详细程度不同,因此结果的准确度也不相同。 风险评估模型能识别出火灾时与疏散有关的危险或相关事故,并能对最后的风险进行量化。通过多次重复运算,可以估算出与不同防烟分区设计或防火保护措施有关的各种重要变量的统计数据。 2)建筑空间的表示 各种疏散模型都必须对建筑空间进行描述,以模拟人员在建筑内部的疏散过程。在模型中,空间被划分为许多小的区域,每个区域都与相邻的区域相连。根据对空间划分的精细程度,常将模型中的空间划分分为两种方法:精细网络法和粗糙网络法。 对于精细网络法,整个封闭空间用覆盖一些瓦片状的网格来表示,各个模型中节点的网格大小与形状都不同。例如,Exodus采用0.5m×0.5m的正方形网格节点,Simulex则采用0.2m×0.2m的正方形网格节点,而Egress则采用六边形的网格节点,每个网格的大小足以容纳一个人。这些网格节点之间的连接也不相同,在Exodus中每个网格与相邻的八个网格节点相连,而Egress中每个网格与相邻的六个网格节点相连。因此,Egress的方法可以准确地表示封闭空间的几何形状及内部障碍物的位置,并在疏散的任意时刻都能将每个人置于准确的位置。 对于粗糙网络法,空间的描述是按照实际建筑结构的划分来确定,每个网格节点表示一个房间或走廊,然后根据它们之间的实际连接关系构建其网络模型。在这类模型中,仅能表示人员从一个建筑单元移动到另一个建筑单元,而无法描述人员在一个建筑单元内的运动,它也无法处理一些局部的现象,例如超越前方人员、避开障碍物等。 3)人群分析 各类疏散模型在对人员进行分析时,采用了两种方法:个体分析法和群体分析法。 个体分析法允许用户设定或由随机方式确定个体特性,人员决策与运动由这些个体特性决定。需要注意的是,不能将个体的独立决定与不能执行群体行为混为一谈,定义个体时并不排斥他具有群体行为,而是先考虑每个人的个体特性,然后再为他指定一个行为,而这个行为也许就是群体行为。 群体分析法将人群视为一个具有共同特性的群体。在描述疏散过程时,不针对逃生的个体,而针对大量的人群。这种方法难以模拟事件对个体的影响(例如:火灾烟气毒性的影响),而只能对整个人群的普遍影响进行模拟。例如,它不能表示老年人或残疾人等特殊人群的生存率,而只能表示受影响的人的比例。它的好处是模型的运算速度相对较快。 4)行为分析 人员在逃生时的决策过程是复杂的,疏散模型根据模拟人员决策过程时所采用的分析方法,分为以下几类:无行为准则模型、函数模拟行为模型、复杂行为模型、基于行为准则的模型以及基于人工智能的模型。 无行为准则模型完全依赖于人群的物理运动和几何形状的物理表达,来影响人员的疏散,并对其进行预测判断。 函数模拟行为模型把人员的行为用一个方程或一个方程组来描述,以此达到控制人的响应的目的。这类模型可以将人定义为个体,但由于所有个体均受到同一函数相同的影响,且会以一定的方式对这种影响产生反作用,因此实际上削弱了个体行为。该函数或者按照现实生活中人员的行为来建立,或者引用其它从事人体行为模拟研究领域的成果(例如,磁模型的方程来源于物理学)。 复杂行为模型通过复杂的物理方法来含蓄表示行为决策准则。此类模型一般基于第二手数据的应用,包括心理的或社会的影响,因而它依赖于第二手数据的准确性与有效性。 基于行为准则的模型预先规定了一套人员的行为准则,然后再根据这些准则来确定疏散过程中人员的行为。例如假如人在一个充满烟气的房间里,他会通过最近的出口离开等类似准则。但是,这种行为决策方式会导致人员在相同的环境下以某种确定的方式进行反应,从而与实际中的人员反应有所差异。 人工智能模型将个体人员设计成能对周围环境进行智能分析的模拟人或与之相近的智能人,因此可以准确地表现其决策过程,但这会使用户对人员行为的控制权被计算机所代替。 3.人员行为特性 火灾是具有突发性的意外事件,伴有火焰、浓烟、强烈的热辐射、噪音和有毒气体,常在短时间内给人以毁灭性的伤害。身处火场的人们往往需要承受巨大的心理压力,从而表现出各种各样的异常行为。研究发现,不同的心理素质、阅历和经验,会导致人在遭遇火灾时,呈现不同的心理反应和行为。但是,如果在遭遇火灾时,能保持良好的心理状态,及时采取自救行动,往往能够化险为夷,成功疏散,避免死伤亡。 对于人员特性的考虑可以分为两方面,一是单个人员独立考虑;一是全局考虑。大多数模型可以根据用户要求或计算机自动设定每个人员的移动属性如步行速度,并记录每个人员在任何时刻的移动历史轨迹。这类模型也不排除群集行为特性,但它是按单个人员检查和分配各自的移动特性的,它需要较多的计算机容量,程序处理的难度也稍大。另一类是按群集方式来考虑人员的移动特性,它将一群或一组人群按同一特性考虑,即将一群人按同一移动速度考虑,认为他们同时到达或离开建筑物的某个网格节点,它具体计算建筑内人员疏散成功率,其操作简单,使用方便,运行速度也较快。 4.软件介绍 (1)STEPS。该模型由英国模特麦克唐纳开发,目的是模拟在正常或紧急情况下,人员在不同类型建筑物中的疏散情况。 模型是一个由一系列的网格单元组成的网络系统,在网格系统中,一个人只能占有一个单元。网格单元的缺省尺寸是0.5m×0.5m。另一个细网格选型可适用于多人占有一个网格单元,但仍处于测试阶段。 (2)Simulex。该模型是由英国的汤普森开发,是一个能够模拟人群从复杂建筑物中疏散的模型。模型采用一个连续的空间体系,各层的平面图和楼梯都划分成一个个0.2m×0.2m的块或网格。该模型包含一个算法,它能够计算出每个网格到最近安全出口的距离,并将这些信息标注在一个距离图表上。 (3)SGEM。该空间网格疏散模型,由香港城市大型和武汉大学开发,其目的是利用CAD平面图,生成复杂建筑的疏散图案,比较得出最佳疏散设计路线。这个模型已经被用于一些咨询项目。 模型的结构基本上是细网络模型。最初,此模型将建筑物分成一些节点,这些节点代表建筑物的空间或区域(不受保护、部分保护和全部保护),其中区域之间至少有一个弧形开口连接,由此形成一个粗的网络。然后,在每个粗的网络单元再分成有限的网格,每个网格的大小是0.4m×0.4m,一个人占据一个网格。此外,同一时间内一个人只能占据一个网格单元。 (4)buildingEXODUS。该模型由英国格林尼治大学开发,其目的是为了模拟疏散大量被很多障碍围困的人。模型由airEXODUS、buildingEXODUS、maritimeEXODUS、railEXODUS、vrEXODUS六个 部分组成。buildingEXODUS试图考虑人与人,人与火灾以及人与建筑物之间的相互作用。模型包括6个在模拟疏散方面相互联系相互传递信息的子模型,他们是人员、运动、行为、毒性、危险性和几何学子模型。 模型是一种行为模式模型,一个细网络系统。其利用二维空间网格绘制出几何结构,位置,障碍物等。这种网格由节点和弧组成。每个节点都代表了建筑平面图上的小空间,而弧在建筑平面图上把这些节点连接在一起。人通过利用这些弧从建筑物的一个节点到另一个节点。这些信息存储在几何子模型中。同时,在整个模拟过程中,每个节点都有毒气等级,烟气温度和浓度等与其相关的动态环境。 5.软件选取 疏散软件能够人为设置出口障碍,通过对建筑平面信息的识别,可以在某些安全出口受阻的情况下创建另一个替代的有效距离地图来引导人员疏散,从而得出建筑物的最优化疏散设计方案。 人员的行为特性具有不确定性,无论是采用函数型行为模式,还是采用规则决定方法,都无法绝对准确模拟出火灾时人员疏散的真实情况,在今后的软件后续开发中可以增加更多的实际因素参数,以修正模拟是疏散结果。 疏散软件基本可以定义个体人员的基本行为特性,模拟出一定的心理反应,能够有条件地寻找出自己有效疏散路径。国际上人员疏散软件的开发已经有一定的积累,并且经过了相当的工程实践检验,但毕竟国外的人员疏散行为、习惯,心理反应等与我国居民有很大不同,一些软件还不能简单的直接拿来应用。需结合我国的建筑特点和疏散演习等进行校正和应用。 一般,当建筑的结构简单、布局规则、疏散路径容易辨别、建筑的功能较为单一且人员密度较大的场所,适合采用水力模型来进行人员疏散的计算,而其他情况则适于采用人员行为模型。原因是:前一种情况下发生火灾,人员可以较为快速准确地获取关键信息并采取疏散行动,人员疏散通常很快由个体行为转化为群体行为,符合水力模型的适用条件。而其他情况下,人员获取信息的渠道相对较少,从接到报警信号到识别火灾以及疏散过程中寻找合适的疏散路径都在很大程度上依赖于个体的判断。因此,人员疏散由个体行为转化为群体行为的时间非常长,有时候可能自始至终都是个体行为,这种情况下选用人员行为模型显然更为合适。如果有条件,可以结合数值计算和建筑疏散演习等方式,进一步验证模型的可靠性。 三、模型评价 建筑消防性能化设计的计算方法中,在确定某计算方法的确定性模型的适用性时,如区域模拟CFAST中的计算模型、场模拟FDS中的计算模型等,需由一个或多个熟悉火灾原理的专家对其进行评价。这种评价并不涉及模型的计算结果,而应该包括所有证据文件,特别是一些假设和近似条件。假如求解是通过手工计算的,则应该通过有关标准和开放的文献提供足够的背景资料。对计算机模型进行评价,应该通过开放的文献,判断是否有足够的科学证据证明模型使用的方法和假设是正确的。代码中常量和缺省量的数值同样要进行精确性和适用性的评估。后者尤其重要,因为常量的值在不同场景中有不一样的值。在一些特定情况下,这些常量的值经常需要调整,例如不同开口情况下的摩擦系数,不合适的缺省值甚至可能得到错误的结果。变量作为输入参数时,应该明确定义它的上、下限值的适用范围。 下面针对建筑消防性能化设计计算方法的确定性模型需要重点评价的几个方法进行论述。 (一)计算模型的适用性 以火灾动力学软件FDS为例。FDS可用来模拟火灾热和燃烧产物的输运、气体和固体表面之间的辐射和对流传热、热解、火蔓延与增长、喷淋等。针对开放空间或燃料控制的火灾,FDS能相对准确地模拟。但FDS的局部性在于其限于低速流动模拟;通过分解压力项,处理状态方程,从而滤除声波的影响。针对相对封闭房间内氧控制的火灾场景,有可能会发生爆燃现象,在此过程中压力波对火焰的传播起着较大的影响。在模拟此类火灾场景时,尽管FDS能模拟并有可能获得看似正确的计算结果,但从模型基本理论上已不再适用。因此,针对计算模型的适用性问题,不仅要从计算结果来考虑,还要从模型的自身假设来分析。由于计算软件为了能模拟更多的问题,往往采用普适性的算法,对于有些根本不满足计算模型理论的场景,计算结果也可能会与实验结果偏差不大,这样的结果是假象,是不能轻易相信的,且也不能说明类似这样的场景就可以采用这样的方法来计算。计算模型理论都不满足,根本就不允许采用这样的模型来计算。 (二)计算的收敛性 在数值方法中,需要对连续性的数学模型进行离散化然后再求解,也就是用一个离散的数值模型来近似。时间和空间都要离散化。一个连续性的数学模型有很多不同的离散方法,形成很多不同的离散模型。为了获得一个好的近似解,要求离散模型能够模拟连续模型的性质和行为。这就要求离散方法采用高阶精度的格式,同时要保证其不会带来计算结果的非物理振荡,能更好地收敛于真实解。对于定常模拟来说,只需要求最终的计算结果逼近真实解。但对于非定常模拟来说,则要求每一计算时间步内的结果也要收敛,且要达到能接受的计算精度。如果模型没有发生时间步的截断而且能保持长的时间步,那表明该模型没有收敛性问题,反之如果经常发生时间步截断,那模型计算将很慢,收敛性差。时间步的大小主要取决于非线性迭代次数。如果模型只用一次非线性迭代计算就可以收敛,那表明模型很容易收敛,如果需要2到3次,模型较易收敛,如果需要4到9次,则模型不易收敛,大于10次的模型可能有问题。 影响计算收敛性的因素很多,如网格尺度、计算格式精度、初始流场参数、化学反应的刚度、计算模型等。 (三)网格尺度的合理性 对于建筑火灾场模拟计算,首先应该考虑网格尺度的合理性问题,而这一问题也是场模拟计算中非常重要的问题。网格尺度的合理性问题直接影响计算结果的误差,甚至影响计算结果是否定性合理。网格尺度的合理性一方面是计算结果不依赖于网格尺度的变化,即网格的独立性;另一方面,在保证网格独立性的同时,应考虑计算资源的能力,尽可能减少计算量,提高计算网格的经济性。在场模拟计算中,如何做到这两点呢? 1.网格独立性 没有网格独立性的模拟,无法评判也没有必要评判计算结果的正确与否。在考虑网格的独立性问题时,原则上将网格划分得越小,通过网格离散的ODE(常微分)方程越逼近连续性模型的PDE(偏微分)方程,即计算精度越高,计算的结果越逼近真实值。通常的做法是,下一次要考虑的网格尺度一般为前一次网格尺度的1/2,即网格加密一倍。如果加密一倍的计算结果与该次加密前的计算结果之间的误差在可接受的范围内,网格不再加密,即可采用该次加密前的网格尺度的计算结果作为最终结果来进行分析评判。如果加密一倍的计算结果与该次加密前的网格尺度的计算结果之间的误差不在可接受的范围内,应进一步进行加密。当然,加密的起点也应有一定的基础,可以基于计算者的经验、基于模型分析、基于计算问题的分析、基于前人或公开发表类似问题的经验等。基于这样的基础,可以加密,也可以加粗网格。如火灾动力学软件(FDS)针对网格尺度的问题,给出了经验公式,即火源直径与网格尺度之比应介于4~16。因此,在进行火灾动力学模拟时,网格尺度选择的起点基于此,针对问题的不同,进行加密和加粗网格。针对开放空间,可能满足此条件的计算结果已独立于网格尺度。而对于受限空间或完全封闭空间,这样的网格尺度还远远不够精强。总之,针对具体的问题,也不一定遵循前述加密原则,可适当增大加密强度。 2.网格经济性 尽管加密网格,可以得到逼近真实值的计算计算结果,但加密也加重计算资源的负担,大大增加了计算时间。一般,加密一倍网格,计算量增大8倍,计算时间可能增大几十倍,甚至上百倍。一方面要保证一定计算精度,另一方面要考虑合适的计算量。因此,采用能满足该精度的最粗网格,也可以采用局部加密度技术,在高密度梯度区(如火源)、壁面附近等加密网格,在低密度梯度区或影响相对小的区域加粗网格。网格加粗可以采用非均匀尺度变化,如指数加密或加粗等,还可采用更为高级的加密技术,如自适应网格等,这样可大大减小计算网格量,提高计算速率。当然,还可以在可接受的计算精度条件下,适当损失一些精度,也可以大大降低计算量,且降低的计算量所带来的优势远远大于损失的少量精度。 (四)时间步长的合理性 在求解微分方程时,必须注意时间步长的选择。首先应考虑系统的稳定性。在分析和求解瞬态算法时,为了解的收敛,必须考虑稳定性。对时间步长进行限制的算法,称作有条件稳定。没有时间步长限制的称为无条件稳定。在求解连续性问题ODE的解析解时,稳定积分能给出衰减解。对于某些时间步长,不稳定方法会产生无界或快速震荡的数值解。要意识到即使是稳定连续性模型,数值模型也有可能不稳定。因此,原连续性模型不稳定时,任何数值模型都得不到精确解。相反,无条件稳定的算法能够得到稳定的数值模型,即使条件是不稳定的。这意味着无条件稳定算法不能考虑快速增长的现象,例如火灾本身。 在建筑性能化设计计算的火灾场模拟中,时间步通常是条件稳定。时间步过大,会出现数值振荡,进而导致不收敛,计算不能进展下去。时间步一般满足流动的CFL条件,如FDS中的时间步,其中dx、dy、dz为三个坐标方向最小网格尺度,g为重力加速度,H为计算域高度。这样的CFL条件仅考虑流动的影响。如果火灾计算中涉及到考虑详细化学反应,那么时间步的取法要综合流动的特征时间(即CFL条件)和化学反应的特征时间。一般,化学反应的特征时间比流动的特征时间要小得多,因此模拟计算的时间步由化学反应来确定。通常,在模拟时,为了加快计算效率,时间步仍采用流动时间步,而采用点隐或全隐的计算方法来处理大时间步下化学反应的刚性问题,即认为在每一流动时间步内认为化学反应已达到平衡。 另外,满足CFL条件的计算中,由于CFL条件中的经验参数(如CFL数等)的选择不同,也有可能导致计算不稳定。另外,在满足计算稳定的条件下,由于CFL数的选择不同,也可能导致计算时间步的大小不同。当然,时步小,计算更接近真值;但太小,受到计算机舍入误差的影响也越大。同时,计算的时间越长,对计算资源的消耗也越大。因此,在开展火灾数值模拟计算时,需要在花费和精度之间找寻一个平衡点。建议开展时间步的收敛性研究,有可能会由于时间步大小,影响到火灾场温度等参数的偏差。但一般在满足CFL条件下,时间步的影响相对较小。 (五)计算区域选择的合理性 计算区域大小的选择问题,实质是边界条件问题。在计算中,无法针对指定的边界给出合适的边界条件,而做的无耐之举。一般,先确定边界条件,然后选择计算区域,来迎合、满足边界条件。在采用商业软件计算中,这种情况通常出现,因为商业软件所提供的边界条件有限。 以FDS模拟开放环境油池火为例,一般四周选择OPEN 边界条件,即边界处的速度梯度、温度梯度和辐射梯度等应为0。由于火羽流的存在,浮力导致火羽流高度方向流体速度在很大的距离内不为0,因此高度方向区域选择主要取决于速度梯度。在水平方向,一方面卷吸导致速度梯度不为0的区域向四周扩展,另一方面辐射和温度也会对计算区域的选择起到决定性的作用。水平区域的大小要综合考虑速度、温度和辐射等的影响。 因此,在开展建筑火灾模拟计算时,要统筹分析场景中的流动情况、温度情况和辐射情况,如针对封闭空间,还要考虑压力情况来选择合适的计算区域,也就涉及到计算区域的收敛性研究,即要求计算结果不依赖于计算区域的大小。当然,选择的计算区域要满足收敛性和可接收精度要求的同时,还要尽可能节省计算时间。
|