主页
软件技术
返回
概念设计结构措施

建筑结构设计中的概念设计与结构措施摘要:在建筑结构设计中,概念设计与结构措施至关重要。一定程度上它反映了一个结构工程师的设计水平,下面就这两个问题谈一下本人的一点看法。关键词:建筑结构设计概念设计结构措施  在建筑结构设计中,概念设计与结构措施至关重要。一定程度上它反映了一个结构工程师的设计水平,下面就这两个问题谈一下本人的一点看法。 1 概念设计的重要性  概念设计是展现先进设计思想的关键,一个结构工程师的主要任务就是在特定的建筑空间中用整体的概念来完成结构总体方案的设计,并能有意识地处理构件与结构、结构与结构的关系。一般认为,概念设计做得好的结构工程师,随着他的不懈追求,其结构概念将随他的年龄与实践的增长而越来越丰富,设计成果也越来越创新、完善。遗憾的是,随着社会分工的细化,大部分结构工程师只会依赖规范、设计手册、计算机程序做习惯性传统设计,缺乏创新,更不愿(不敢)创新,有的甚至拒绝对新技术、新工艺的采纳(害怕承担创新的责任)。大部分工程师在一体化计算机结构程序设计全面应用的今天,对计算机结果明显不合理、甚至错误而不能及时发现。随着年龄的增长,导致他们在大学学的那些孤立的概念都被逐渐忘却,更谈不上设计成果的不断创新。强调概念设计的重要,主要还因为现行的结构设计理论与计算理论存在许多缺陷或不可计算性,比如对混凝土结构设计,内力计算是基于弹性理论的计算方法,而截面设计却是基于塑性理论的状态设计方法,这一矛盾使计算结果与结构的实际受力状态差之甚远,为了弥补这类计算理论的缺陷,或者实现对实际存在的大量无法计算的结构构件的设计,都需要优秀的概念设计与结构措施来满足结构设计的目的。同时计算机结果的高精度特点,往往给结构设计人员带来对结构工作性能的误解,结构工程师只有加强结构概念的培养,才能比较客观、真实地理解结构的工作性能。概念设计之所以重要,还在于在方案设计阶段,初步设计过程是不能借助于计算机来实现的。这就需要结构工程师综合运用其掌握的结构概念,选择效果最好、造价最低的结构方案,为此,需要工程师不断地丰富自己的结构概念,深入、深刻了解各类结构的性能,并能有意识地、灵活地运用它们。2 协同工作与结构体系  协同工作的概念广泛存在于工业产品的设计和制造中,对于任一个工业产品,我们均不希望其在远未达到其设计寿命(负荷、功能)时,它的某些部件(或零件)即出现破坏。对于建筑结构,协同工作的概念即是要求结构内部的各个构件相互配合,共同工作。这不仅要求结构构件在承载能力极限状态能共同受力,协同工作,同时达到极限状态,还要求他们能有共同的耐久寿命。结构的协同工作表现在基础与上部结构的关系上,必须视基础与上部结构为一个有机的整体,不能把两者割裂开来处理。举例而言,对砖混结构,必须依靠圈梁和构造柱将上部结构与基础连接成一个整体,而不能单纯依靠基础自身的刚度来抵御不均匀沉降,所有圈梁和构造柱的设置,都必须围绕这个中心。对协同工作的理解,还在于当结构受力时,结构中的各个构件能同时达到较高的应力水平。在多高层结构设计时,应尽可能避免短柱,其主要的目的是使同层各柱在相同的水平位移时,能同时达到最大承载能力,但随着建筑物的高度与层数的加大,巨大的竖向和水平荷载使底层柱截面越来越大,从而造成高层建筑的底部数层出现大量短柱,为了避免这种现象的出现,对于大截面柱,可以通过对柱截面开竖槽,使矩形柱成为田形柱,从而增大长细比,避免短柱的出现,这样就能使同层的抗侧力结构在相近的水平位移下,达到最大的水平承载力;而对于梁的跨高比的限制,一般还没有充分认识到。实际上与长短柱混杂的效果一样,长、短梁在同一榀框架中并存,也是极为不利的,短跨梁在水平力的作用下,剪力很大,梁端正、负弯矩也很大,其配筋全部由水平力决定,竖向荷载基本不起作用,甚至于梁端正弯矩钢筋也会出现超筋现象,同时,由于梁的剪力增大,也会使支承柱的轴力大幅增大,这种设计是不符合协同工作原则的,同时,结构的造价必将会上升。多高层结构设计的主要目的即是为了抵抗水平力的作用,防止扭转,为有效的抵抗水平力作用,平面上两个正交方向的尺寸宜尽量接近,目的是保证这两个方向上的惯性矩相等,以防止一个方向强度(稳定性)储备太大,而另一个方向较弱,因此,抗侧力结构(柱、剪力墙)宜设置在四周,以增大整体的抗侧刚度及抗扭惯性矩,同时,应加大梁或楼层的刚度,使柱(或剪力墙)能承担较大的整体弯矩,这就是转换层的概念。防止扭转的目的,是因为在扭转发生时,各柱节点水平位移不等,距扭转中心较远的角柱剪力很大,而中柱剪力较小,破坏由外向里,先外后里。为防止扭转,抗侧力结构应对称布置,宜设在结构两端,紧靠四周设置,以增大抗扭惯性矩。因此,高层或超高层建筑中,尽管角柱轴压比较小,但其在抗扭过程中作用却很大(若角柱先坏,整个结构的扭转刚度或强度下降,中柱必定依次破坏),同时,在水平力的作用下,角柱轴力的变化幅度也会很大,这样势必要求角柱有较大的变形能力。由于角柱的上述作用,角柱设计时在承载力和变形能力上都应有较多考虑,如加大配箍,采用密排箍筋柱、钢管混凝土柱。目前,部分已建建筑在其四角设置巨型钢管柱,从而极大地增强了角柱的强度和抗变形能力。在高层建筑结构设计中,柱轴压比的限值已成为困扰结构工程师的实际问题,随着建筑高度的增加,结构下部柱截面也越来越大,而柱的纵向钢筋却为构造配筋,即使采用高强混凝土,柱截面也不会明显降低。实际上,柱的轴压比大小,直接反映了柱的塑性变形能力,而构件的变形能力会极大地影响结构的延性。混凝土基本理论指出:混凝土构件的曲率延性,即弯曲变形能力主要取决于截面的相对受压区高度和受压区边缘混凝土的极限变形能力。相对受压区高度主要取决于轴压比、配筋等,混凝土的极限变形能力主要取决于箍筋的约束程度,即箍筋的形式和配箍特征值(λ=ρfyfc)。因此,为了增大柱在地震作用下的变形能力,控制柱的轴压比和改善配箍具有同样的意义,因而采用密排螺旋箍筋柱或钢管混凝土均可以提高柱轴压比的限值。3 协同工作与材料利用率  协同工作设计的另一个目的,还在于对材料的充分利用。一般来讲,材料利用率越高(即应力水平越高),该结构的协同工作程度也越高(从优化设计的角度,尽管结构性能最好的方案,不一定是材料利用率最高),尤其对我国这样一个发展中国家,结构设计的目的即是花最少的钱,做最好的建筑,这就要求设计时对结构材料的充分利用,这从梁类构件的演变可以看出。矩形截面梁是最普通的受弯构件,它的材料利用率很低,原因有二:一方面是靠近中和轴的材料应力水平低,另一方面是梁的弯矩沿梁长一般是变化的,这样对等截面梁来说,大部分区段,即使是拉、压边缘,其应力水平均较低。针对梁的这种受力特点,用结构概念分析,主要是因为梁截面存在应变梯度,只有当构件是轴心受力时,材料利用率才可能增大,于是就出现了平面桁架,平面桁架可以理解成掏空的梁将梁中多余材料去除,既经济,又降低自重;故桁架的上弦相应于梁的受压边,下弦相应于受拉钢筋。规则桁架中腹杆的受力(拉、压)与梁中主拉、压应力方向一致,根据上述分析,还可以将桁架的外形设计为与弯矩图相似的形状,从而使桁架的弦杆受力均匀。由于桁架中大量存在压杆,压杆的强度往往由其稳定性决定,而不是由杆件截面材料强度决定,因此,在平面桁架的设计过程中,应设法降低压杆的长细比。单纯增大截面是下策,特别是上弦杆,应努力增加其平面外的刚度(有时上弦采用双杆形成的复合压杆),提供平面外约束(增加支撑),如果把这些平面外的支撑再连接成桁架,这样就使平面桁架变为平面交叉桁架,最后发展为空间网架。空间网架的材料利用率高,应力水平高,故在大跨度、大空间结构中广泛使用,但网架结构中仍然存在压杆,压杆(特别是钢压杆)的应力水平不可能太高(因为随着跨度的增加,网架的高度增大,腹杆的长度将增大,同时节点距离的增大也导致弦杆长度的增大),这样高强材料就不能使用。因此,努力减少或消除结构中的压杆,就使我们找到了悬索结构,悬索结构中所有的杆件均为拉杆,这样就使悬索结构中杆件的应力水平极高,材料利用率极大,高强材料得以充分利用,还可施加预应力。因而在超大跨度的结构中,悬索结构(或包括悬索结构的组合结构)是首选的结构类型。就混凝土基本理论的发展来看,也体现了使各种材料充分发挥性能,并相互协同工作的特点。林同炎教授认为:钢筋混凝土与预应力混凝土之间的区别在于钢筋混凝土是将混凝土与钢筋两者简单地结合在一起,并让他们自行地共同工作,预应力混凝土是将高强钢筋与高强混凝土能动地结合在一起,使两种材料均产生非常好的性能。反映了人们对混凝土中的协同工作认识和运用过程的加深。目前广泛使用的钢-混凝土结构,是将钢结构与混凝土结构相互取长补短形成的一种新型的结构形成。尤其是钢管混凝土,与预应力混凝土相似,更将这两种材料能动地结合起来,实现了结构材料的又一次革命。钢管混凝土的原理有二:1)借助钢管对核心混凝土的约束,使核心混凝土有更高的强度和变形能力;2)核心混凝土又对钢管壁的稳定提供了有效可靠的支撑。钢管混凝土的极限承载力远大于钢管和核心混凝土两者的承载力之和,约为两者之和的17~20倍,其极限变形能力是普通钢筋混凝土的几倍甚至几十倍,这是钢材与混凝土的又一次理想结合。它的出现,使传统意义上的受压破坏特征由脆性变为延性,对结构抗震的延性设计意义巨大,也使超高层建筑底层柱的轴压比限制问题迎刃而解。从上述结构构件的演化,推而广之,在结构设计中,只有当构件越多处于轴心受力状态,其材料的利用率才可以高,经济性也就越好。对框架结构,竖向载作用下,框架柱宜处于小偏心受压下工作,若大量柱处于大偏心受压工作状态,则该结构方案的经济性一般不好,故对非地震区的框架结构,其框架柱应优先设计为小偏心受压。这里就出现了一个矛盾,在地震作用下,大部分柱可能处于大偏心受压状态工作,截面设计时,大量柱的配筋仅仅是为万一发生地震而增加的,这些钢材在不发生地震时,将不起丝毫作用,这显然是不经济的,与抗震设计的整体思想也不相符。为避免这种现象的出现,一方面应设法加强结构整体性,必要时,在某些楼层设置刚性转换层,从而加大整体弯矩,减小引起柱弯曲变形的局部弯矩;另一方面,对柱的设计,可将整个楼层面的柱设计为多肢柱,使多肢柱的每一根杆件都能处于轴心受力状态,如对钢管混凝土柱,只有在小偏心受压(或接近轴压)时,钢管和核心混凝土才能更好地协同工作,在偏心距较大的受压构件中使用时,更宜将其设计成双肢、三肢或四肢组成的组合构件。4 结 语  协同工作的原则也是整体工作的原则。在概念设计日益重要的今天,要求结构工程师应有深厚的基本理论基础,并能不断吸取他人先进的设计思想。对自己的作品、设计(即使是已建成的),应经常进行深刻的反思,对每一项设计都精益求精。  以上仅为本人观点,不对之处,请各位专家批评指正。             2005.10.8.

常用结构计算软件与结构概念设计论文上传:jiegou论文作者:不详摘要:随着计算机结构分析软件的广泛应用和普及,它使人们摆脱了过去必须进行的大量的手工计算,使人们的工作效率得以大幅度的提高。与此同时,人们对结构计算软件的依赖性也越来越大,有时甚至过分地相信计算软件,而忽略了结构概念设计的重要性。关键词:常用结构计算软件概念设计

金属屋顶系列-济南元易金属屋面有限责任公司

目录: 1)联系方式2)公司简介3)主要特点4)元易屋顶介绍5)彩涂板介绍6)工艺流程7)工程集锦8)工程示例图1、结构计算软件的局限性、适用性和近似性。随着计算机结构分析软件的广泛应用和普及,它使人们摆脱了过去必须进行的大量的手工计算,使人们的工作效率得以大幅度的提高。与此同时,人们对结构计算软件的依赖性也越来越大,有时甚至过分地相信计算软件,而忽略了结构概念设计的重要性。由于种种原因,目前的结构计算软件总是存在着一定的局限性、适用性和近似性,并非万能。如:结构的模型化误差;非结构构件对结构刚度的影响;楼板对结构刚度的影响;温度变化在结构构件中产生的应力;结构的实际阻尼(比);回填土对地下室约束相对刚度比;地基基础和上部结构的相互作用等等。有些影响因素目前还无法给出准确的模型描述,也只能给出简化的表达或简单的处理,受人为影响较大。加之,建筑体型越来越复杂,这就对结构计算软件提出了更高的要求,而软件本身往往又存在一定的滞后性。正是因为如此,结构工程师应对所用计算软件的基本假定、力学模型及其适用范围有所了解,并应对计算结果进行分析判断确认其正确合理、有效后用于工程设计。2、现阶段常用的结构分析模型  实际结构是空间的受力体系,但不论是静力分析还是动力分析,往往必须采取一定的简化处理,以建立相应的计算简图或分析模型。目前,常用的结构分析模型可分为两大类:第一类为平面结构空间协同分析模型;另一类为三维空间有限元分析模型。1)平面结构空间协同分析模型。将结构划分若干片正交或斜交的平面抗侧力结构,但对任意方向的水平荷载和水平地震作用,所有正交或斜交的抗侧力结构均参与工作,并按空间位移协调条件进行水平力的分配。楼板假定在其自身平面内刚度无限大。这一分析模型目前已经很少采用。其主要适用于平面布置较为规则的框架结构、框-剪结构、剪力墙结构等。2)三维空间有限元分析模型。将建筑结构作为空间体系,梁、柱、支撑均采用空间杆单元,剪力墙单元模型目前国内有薄壁杆件模型、空间膜元模型、板壳单元模型以及墙组元模型。楼板可假定为弹性,也可假定在其自身平面内刚度无限大,还可假定楼板分块无限刚。该模型以节点位移为未知量,由矩阵位移法形成线性方程组求解。3、常用结构计算软件  多、高层结构的基本受力构件有柱、梁、支撑、剪力墙和楼板。柱、梁及支撑均为一维构件,可用空间杆单元来模拟其受力状态。空间杆单元的每个端点有6个自由度,即3个平动自由度和3个转角自由度。对一维构件,各种有限元分析软件对这类构件的模型化假定差异不大。剪力墙和普通楼板均为二维构件,这两种构件的模型化假定是关键,它直接决定了多、高层结构分析模型的科学性,同时也决定了软件分析结果的精度和可信度。目前国内外流行的几个结构计算软件对剪力墙和楼板的模型化假定差异较大。现进行分述。3.1TAT结构计算软件  TAT是由中国建筑科学研究院开发的建筑结构专用软件,采用菜单操作,图形化输入几何数据和荷载数据。程序对剪力墙采用开口薄壁杆件模型,并假定楼板在平面内刚度无限大,平面外刚度为零。这使得结构的自由度大为减少,计算分析得到一定程度的简化,从而大大提高了计算效率。薄壁杆件模型采用开口薄壁杆件理论,将整个平面联肢墙或整个空间剪力墙模拟为开口薄壁杆件,每个杆件有两个端点,每个端点有7个自由度,前6个自由度的含义与空间杆单元相同,第7个自由度是用来描述薄壁杆件截面翘曲的。开口薄壁杆件模型的基本假定为:1)在线弹性条件下,杆件截面外形轮廓线在其自身平面内保持不变,在平面外可以翘曲,同时忽略其剪切变形的影响。这一假定实际上增大了结构的刚度,薄壁杆件单元及其墙肢越多,则结构刚度增大的程度越高。2)将同一层彼此相连的剪力墙墙肢作为一个薄壁杆件单元,将上下层剪力墙洞口之间的部分作为连梁单元。这一假定将实际结构中连梁对墙肢的线约束简化为点约束,削弱了连梁对墙肢的约束,从而消弱了结构的刚度。连梁越多,连梁的高度越大,则结构刚度消弱越大。3)引入楼板在其自身平面内刚度无限大,而平面外刚度为零的假定。实际工程中许多布置复杂的剪力墙难以满足薄壁杆件模型的基本假定,从而使计算结果难以满足工程设计的精度要求。1)变截面的剪力墙:在平面布置复杂的建筑结构中,常存在薄壁杆件交叉连接、彼此相连的薄壁杆件截面不同,甚至差异较大的情况。由于这些薄壁杆件的扇形坐标不同,其翘曲角的含义也不同,因而由截面翘曲而引起的纵向位移不易协调,会导致一定的计算误差。2)长墙、矮墙:由于薄壁杆件模型不考虑剪切变形的影响,而长墙、矮墙是以剪切变形为主的构件,其几何尺寸也难以满足薄壁杆件的基本要求,采用薄壁杆件理论分析这些剪力墙时,存在着较大的模型化误差。3)多肢剪力墙:薄壁杆件模型的一个基本假定就是认为杆件截面外形轮廓线在自身平面内保持不变,在墙肢较多的情况下,该假定会导致较大误差。4)框支剪力墙:框支剪力墙和转换梁在其交接面上是线变形协调的,而采用薄壁杆件理论分析框支墙时,由于薄壁杆件是以点传力的,作为一个薄壁杆件的框支墙只有一点和转换梁的某点是变形协调的,这必然会带来较大的计算误差。5)框架梁与剪力墙的连接:在一般情况下和剪力墙垂直相连的框架梁,其受剪力墙的约束并不强,梁这一端的弯矩一般并不大,但用薄壁杆件理论分析剪力墙时,梁要通过刚臂与薄壁杆件的剪心相连,其结果是强化了剪力墙对梁端的嵌固作用,使梁端弯矩的计算值偏大。6)柱、墙上下偏心:程序将自动在上(薄壁)柱的下端加一水平刚域,刚域的存在对结构整体刚度有较大的影响。7)对悬挑剪力墙、无楼板约束的剪力墙等也不适合采用薄壁杆件单元计算。  TAT软件适合于框架、框架-剪力墙、剪力墙及筒体结构,但应用时应根据结构的实际情况对剪力墙进行处理以减小计算误差。1)剪力墙的输入处理:对长度超过8m的剪力墙和多肢剪力墙应在适当的位置,按照使每个薄壁柱的刚度尽量均匀的原则人为设置计算洞口,这样可使薄壁柱的受力更符合实际。当洞口较小时,在实际施工时按无洞处理。2)剪力墙洞口的处理:因为TAT采用薄壁柱模型,每层薄壁柱上下各有一个节点与上下层的柱、薄壁柱或无柱节点相连,通过这样的连系将上下层力传递计算,当上下层洞口不对齐时,由于洞口会切割一个薄壁柱为2个或更多,造成上下层节点不一一对应,使上下层传力混乱,这时应采用简化的方法进行处理。剪力墙洞口一般分对齐、开通、忽略三种处理方法。3)框支剪力墙的处理:对于框支剪力墙,用薄壁柱模拟的剪力墙就有个传力问题,上部薄壁柱只能传力给下面一个点,而下部往往是由多个点来支撑上部剪力墙的,这时应对框支梁上部的剪力墙进行离散化处理,将计算产生的误差控制在局部平面内,这样才能在结构的整体分析中得到一个比较满意的结果,然后再利用高精度平面有限元程序对关键部位进行细致的内力分析。  TBSA也是由中国建筑科学研究院开发的多、高层建筑的结构专用程序,其计算模型和原理与TAT相似,这里不再赘述。3.2SATWE结构计算软件  SATWE是专门为多、高层建筑结构分析与设计而研制的空间结构有限元分析软件,适用于各种复杂体型的高层钢筋混凝土框架、框剪、剪力墙、筒体结构等,也适用于混凝土-钢混合结构和高层钢结构。  SATWE是用墙元来模拟剪力墙。SATWE中的墙元是在板壳单元的基础上构造出的一种通用墙元,它采用静力凝聚原理将由于墙元的细分而增加的内部自由度消去,将其刚度凝聚到边界节点上,从而保证了墙元的精度和有限的出口自由度,而且墙元的每个节点都具有空间全部6个自由度,可以方便地与任意空间梁、柱单元连接,而无需任何附加约束,同时也降低了剪力墙的几何描述和板壳单元划分的难度,提高了分析效率。板壳单元是目前模拟剪力墙的最理想单元,SATWE选用这一单元并对墙元的细分和墙上开洞作了自动化处理。  板壳单元模型的主要特点是用每一节点6个自由度的壳元来模拟剪力墙单元。剪力墙既有平面内刚度,又有平面外刚度,楼板既可以按弹性考虑,也可按刚性板考虑,这是一种接近实际情况的模型。该模型的特点是:1)具有平面内、外刚度,可与空间任何构件连接,较好地反映剪力墙真实受力状态,其刚度与实际刚度较为一致。2)通过静力凝聚形成的墙元来模拟剪力墙,解决了剪力墙模型化的问题。3)允许剪力墙洞口不对齐,适用于较复杂的结构,较真实地分析出剪力墙的内力和变形。4)结构自由度数目增多,计算工作量增加,计算效率有所降低。  SATWE在对楼板的处理上采用了四种不同的假定:1)假定楼板整体平面内无限刚;2)假定楼板分块平面内无限刚;3)假定楼板分块平面内无限刚,并带有弹性连接板带;4)假定楼板为弹性板。  为提高计算效率,在保证一定的分析精度的前提下,针对不同类型的工程,采用不同的楼板假定。  在使用SATWE软件时,值得注意的有两点:1)墙元的划分并非越细越好。当墙元划分过细时,由于单元有一定的厚度,当单元的长、宽与单元的厚度比较接近时,墙单元就不能再作为墙单元计算。2)在地震作用分析时,程序对振型分解法提供了两种解法:总刚分析方法和侧刚分析方法。两者的主要区别在于对墙元侧向节点自由度的处理上,前者将其作为子结构出口自由度,参加总刚的集成,后者将其作为子结构的内部自由度,在单元计算阶段就凝聚掉,这就造成墙元之间的变形不协调,使之在变形的过程中可以自由开裂,使得计算出的结构刚度偏小,尤其在采用弹性楼板假定以及错层结构中会产生较大的误差。3.3ETABS软件  ETABS软件是由美国Berkeley地震工程研究中心开发的高层建筑三维专用有限元分析软件,其特点是采用空间杆单元模拟梁、柱、支撑构件,采用膜元模型来模拟剪力墙,楼板可采用平面内无限刚假定、分块无限刚假定和弹性假定。膜元模型是把无洞口或有较小洞口的一片剪力墙简化为一个墙板单元,把有较大洞口的一片剪力墙简化为一个由墙板单元和连梁组成的墙板-梁体系,即把洞口两侧部分作为两个墙板单元,上、下层剪力墙洞口之间部分作为一根连梁。墙板单元由膜单元+边梁+边柱组成,膜单元只有墙平面内的抗弯、抗剪和抗压刚度,平面外刚度为零;边梁为一种特殊的刚性梁,在墙平面内的抗弯、抗剪和轴向刚度无限大,垂直于墙平面的抗弯、抗剪和抗扭刚度为零;边柱的作用为等效替代剪力墙的平面外刚度,边柱可能是实际工程中的一根柱,也可能是人为虚拟的柱。膜元模型使得剪力墙的几何描述和前处理工作得到了简化,解决了剪力墙单元划分的难题,结构自由度有所减少,分析效率也得到了一定的提高,位移的协调性介于薄壁杆件模型和有限元模型之间,分析结果也较薄壁杆件模型更合理。  膜元模型的不足之处主要是:膜元模型中是按柱线来把剪力墙划分为一个个墙板单元的,为了使上、下层之间的墙板单元角点变形协调,模型要求整个结构从上到下柱线对齐、贯通。对于复杂工程,特别是当剪力墙洞口上下不对齐、不等宽以及各层与剪力墙搭接的梁平面位置有变化时,将导致柱线又多又密,这不仅会增加许多墙板单元,增加计算量,更重要的是会使许多墙板单元变得又细又长,单元的几何比例不当,造成墙板单元刚度奇异,使分析结果失真。此外,将剪力墙洞口间部分模型化为一个梁单元,削弱了实际结构中连梁对墙肢的约束,其结果是结构整体计算的分析结果偏柔,这一点与TAT计算软件相似。  事实上,ETABS采用空间协同工作体系,因此是准三维分析程序。其主要优点是针对建筑结构的特点进行编制,使用起来比较方便。不足之处是它并非完全三维空间分析程序,协同工作假定带来一定的计算误差,同时,对剪力墙的模型化假定也使得ETABS分析结果偏柔。2003年10月,由中国建筑设计研究院标准所和美国CSI公司联合推出符合中国规范的ETABSV8中文版,为我国的结构计算软件市场注入了新的活力。ETABS软件功能十分强大,除了可以进行线性静、动力反应分析外,还可以进行非线性静、动力反应分析、推覆分析和P-Δ效应分析等。3.4SAP2000软件  20世纪70年代初,美国Willson教授等人编制了结构通用有限元分析程序SAP5,该软件在国际上得到了极其广泛的应用。经过二十多年的发展和完善,90年代中期,Willson教授等人将美国、加拿大和新西兰等国的设计规范和常用设计材料的特性编入程序,根据计算分析结果,直接进行下一步设计,推出了被称为21世纪的结构分析与设计程序SAP2000。该软件以空间杆单元模拟梁、柱、支撑,以壳元模拟剪力墙。可以进行线性静、动力反应分析,也可以进行非线性静、动力反应分析、推覆分析和P-Δ效应分析等。但SAP2000因其价格昂贵、前后处理工作量大且与我国规范不相符合等原因,在我国的应用和推广受到一定的制约。4、从整体上把握结构的各项性能  由于结构计算软件存在着一定的适用性、局限性和近似性,在计算输出的结果中可能存在部分构件或部位内力异常的情况,尤其是对于复杂结构。这时,不能据此来否定分析软件的正确性,更不能对异常构件、部位置之不理或偏信于计算机的结果,而是应该从整体上来把握和控制结构体系的各项性能,对内力异常的构件或部位,应从明确的结构概念出发来分析和处理,从而确保结构的安全性、经济性、合理性。1)剪重比控制:剪重比指结构任一楼层的水平地震剪力与该层及其上各层总重力荷载代表值的比值,一般是指底层水平剪力与结构总重力荷载代表值之比。它在某种程度上反映了结构的刚柔程度。剪重比应在一个比较合理的范围内,以保证结构整体刚度的适中。剪重比太小,说明结构整体刚度偏柔,水平荷载或水平地震作用下将产生过大的水平位移或层间位移;剪重比太大,说明结构整体刚度偏刚,会引起很大的地震内力,不经济。2)位移比控制:位移比是指楼层的最大弹性水平位移(或层间位移)与该楼层两端弹性水平位移(或层间位移)的平均值之比。位移比的大小是反映结构平面规则与否的重要依据,它侧重控制的是结构侧向刚度与扭转刚度之间的一种相对关系,而非其绝对大小,它的目的是使结构抗侧力构件的布置更有效、更合理。3)周期比控制:周期比是指结构扭转为主的第一周期Tt与平动为主的第一周期T1的比值,其主要目的是控制结构在地震作用下的扭转效应。周期比实际上反映了结构的扭转刚度和侧向刚度之间的一种对应关系,同时也反映了结构抗侧力构件布置的合理性和有效性。4)层刚度比控制:我国的抗震规范和高规均对结构的楼层侧向刚度比作出了规定,其主要目的是为了保证结构竖向刚度变化的均匀性,防止出现刚度突变的情况。层刚度比较直观地反映了结构楼层侧向刚度沿竖向分布的均匀程度,它是衡量结构竖向规则与否的重要标志。5、抗震概念设计的一些重要准则  抗震分析是建筑结构计算分析的一个重要方面,由于地震作用的不确定因素太多,仅凭计算分析是不能保证结构安全的,抗震概念设计就成为抗震设计的一个重要组成部分,它应该贯穿于结构计算分析和细部构造的全过程。抗震设计应符合以下原则:1)应具有明确的计算简图和合理的地震作用传递途径。2)对可能出现的薄弱部位,应采取措施提高抗震能力。3)应避免因部分结构或构件的破坏而导致整个结构丧失抗震能力或对重力荷载的承载能力。4)结构应具备必要的抗震承载力,良好的变形能力和消耗地震能量的能力。5)宜具有合理的刚度和承载力分布,避免因局部削弱或突变形成薄弱部位,产生过大的应力集中或塑性变形集中。6)结构在两个主轴方向的动力特性宜接近。7)采用有效的措施防止过早的剪切、锚固和受压等脆性破坏,因此采用约束混凝土是非常重要的措施。8)在地震作用下节点的承载力应大于相连构件的承载力。当构件屈服、刚度退化时,节点应能保持承载力和刚度不变。6、结 语1)根据建筑结构的特点,选择合适的结构计算软件,并应了解软件的基本假定、计算模型和适用范围。2)根据结构计算模型的特点,对实际结构采取必要的技术处理,使计算模型和实际结构尽可能地接近,以满足工程设计精度的要求。3)概念设计是结构设计的核心和灵魂,它统领结构设计的全过程。运用结构概念设计从整体上把握结构的各项性能,这样才能对计算分析结果进行科学的判断、合理的采用


安装 MySQL与MySQL GUI Tools
怎样在MySQL中直接储存图片
一些MySQL的常见问题
MySQL字符集及MySQL编码转换
MySQL数据库导出和导入的方法
MySQL的使用方法
MySQL日期数据类型使用总结
MySQL基本用法
信息发布:名易软件http://www.myidp.net