主页
软件技术
返回
数据仓库与数据挖掘在CRM系统中的应用
本文来自:名易软件数据仓库与数据挖掘在系统中的应用

1引言

随着数据库技术、网络技术的不断发展及数据库管理系统的广泛应用,数据库中存储的数据量急剧增大。然而,如何有效地使用这些数据却成为一个问题,因为往往是数据丰富而知识缺乏,人们目前所使用的数据库技术无法将隐藏在数据背后的重要信息挖掘出来利用,所以如何迅速、准确、有效且适量地提供用户所需的信息,发现信息之间潜在的联系,支持管理决策就是数据挖掘和数据仓库要解决的课题,同时也是产生的必要条件和最终目的。

2数据仓库与数据挖掘的概念

2.1数据仓库

目前,数据仓库一词尚没有一个统一的定义,著名的数据仓库专家W.H.Inmon在其著作《BuildingtheDataWarehouse》一书中给予如下描述:数据仓库(DataWarehouse)是一个面向主题的(SubjectOriented)、集成的(Integrated)、相对稳定的(Non-olatile)、反映历史变化(TimeVariant)的数据集合,用于支持管理决策。对于数据仓库的概念我们可以从两个层次加以理解:首先,数据仓库用于支持决策,面向分析型数据处理,它不同于企业现有的操作型数据库;其次,数据仓库是对多个异构的数据源有效集成,集成后按照主题进行了重组,并包含历史数据,而且存放在数据仓库中的数据一般不再修改。数据仓库不是静态的概念,只有把信息及时交给需要这些信息的使用者,供他们做出改善其业务经营的决策,信息才能发挥作用,信息才有意义。而把信息加以整理归纳和重组,并及时提供给相应的管理决策人员,是数据仓库的根本任务。因此,从产业界的角度看,数据仓库建设是一个工程,是一个过程。整个数据仓库系统是一个包含4个层次的体系结构,具体如下:

数据源:是数据仓库系统的基础,是整个系统的数据源泉。通常包括企业内部信息和外部信息。内部信息包括存放于RDBMS中的各种业务处理数据和各类文档数据。外部信息包括各类法律法规、市场信息和竞争对手的信息等。

数据的存储与管理:是整个数据仓库系统的核心,数据仓库的组织管理方式决定了它有别于传统数据库,同时也决定了其对外部数据的表现形式。要决定采用什么产品和技术来建立数据仓库的核心,则需要从数据仓库的技术特点着手分析,针对现有各业务系统的数据,进行抽取、清理,并有效集成,按照主题进行组织。

OLAP服务器:对分析需要的数据进行有效集成,按多维模型予以组织,以便进行多角度、多层次的分析,并发现趋势。其具体实现可以分为:ROLAP、MOLAP和HOLAP。ROLAP基本数据和聚合数据均存放在RDBMS之中;MOLAP基本数据和聚合数据均存放于多维数据库中;HOLAP基本数据存放于RDBMS之中,聚合数据存放于多维数据库中。

前端工具:主要包括各种报表工具、查询工具、数据分析工具、数据挖掘工具以及各种基于数据仓库或数据集市的应用开发工具。其中数据分析工具主要针对OLAP服务器,报表工具、数据挖掘工具主要针对数据仓库。

2.2数据挖掘技术

数据挖掘是从海量的数据中提取或挖掘知识,是指从数据集中识别出有效的、新颖的、潜在有用的以及最终可理解的模式的高级处理过程。数据挖掘可分为有向和无向两大类。有向数据挖掘的任务是用一个或几个数据项来解释、估计或预测某个特定的数据项,即目标数据项,这类似于从自变量来得到因变量。无向数据挖掘并不定义目标数据项,它只是试图在数据中找到有用的规律、关系或模式。通常做法是用无向数据挖掘来识别数据中的规律,然后用有向数据挖掘来解释这些规律。

3数据仓库与数据挖掘技术在CRM系统中的应用

3.1数据仓库——企业实施CRM的基础

数据仓库是企业CRM的中央存储系统。数据仓库体系结构属于基础设施的建设,只有稳固的数据仓库基础设施才能支撑灵活多样的数据仓库应用。

客户关系管理(CustomerRelationshipManagement,CRM)是指企业用CRM软件提供的科学的分析工具和方法来分析企业销售市场与客户之间的关系。CRM软件是选择在企业销售市场中有价值客户及其关系的一种商业策略,分析这些客户的销售动态。CRM要求以“客户为中心”、“一切为客户着想”的商业哲学和企业文化来支持有效的市场营销与服务流程。如果企业拥有正确的领导、策略和企业文化,CRM应用将为企业实现有效的客户关系管理。

企业在长期的运营过程中,积累了大量的数据。但这些分散在各个业务系统中的数据是面向业务的,不是面向决策的。因此,首先必须对这些分散的数据进行抽取、清洁、转换和加载,形成企业数据仓库,并根据不同的主题,产生相应的数据集市,如一般客户分析数据集市,大客户分析数据集市等,这种多数据集市的建设有利于分析不同客户的行为特点。近年来,各企业客户需求逐渐趋向多元化,如果不对客户信息进行收集、整理、分析和归类,客户经理就无法知道谁是能为企业创造利润的高、中端优质客户,竞争的关键就在于怎样发现优质客户和如何避免优质客户的流失;其次,通过OLAP、数据挖掘方法对这些数据进行深入分析,并以人员容易理解的方式展示出来。

在CRM系统中,系统结构采用BS框架结构,数据库集中,客户端采用浏览器访问,访问的浏览器采用IE6以上。通过CRM系统将数据仓库中客户每天的销售记录作为数据源,运用科学的分析方法可以对客户进行分析。单体分析:分析某一客户的相关信息,分析的内容为该客户的销售数量、金额、收益,并与企业的平均销售数量、金额、收益作比较。群体分析:客户某一群体的销售数量、金额、收益。市场分析;便于领导及时、直观、准确地了解市场的发展及变化情况,以便宏观调控。通过将客户记录作为数据仓库中的数据源,经营决策者利用CRM提供的模块功能,就能够分析市场,以及抓住客户销售心理,从而正确指导销售,提升企业市场竞争力,最终赢得客户和市场,“与客户共创成功”。

3.2数据挖掘——企业CRM系统的核心

随着市场体制改革的日益深入,各企业为了保持较高的客户获取和保持率,并维持可赢利性,需要经常扩展和现有客户的关系、降低行销费用。这就需要对基于数据仓库的CRM系统进行更深入的挖掘,这时数据挖掘技术的使用便成为企业CRM系统制胜的关键。以下给出几种应用:

(1)客户获得

对大多数行业来说,企业的增长需要不断地获得新的客户。新的客户包括以前没有听说过企业产品的人、以前不需要产品的人和竞争对手的客户。数据挖掘能够辨别潜在客户群,并提高市场活动的响应率。

(2)交叉销售

现在企业和客户之间的关系是经常变动的,一旦一个人或者一个公司成为企业的客户,企业就要尽力保持这种客户关系。客户关系的最佳境界体现在3个方面:①最长时间地保持这种关系;②最多次数地和客户交易;③保证每次交易的利润最大化。因此,企业需要对已有的客户进行交叉销售(Cross-selling)。交叉销售是指企业向原有客户销售新的产品或服务的过程。交叉销售是建立在双赢的基础之上的,客户因得到更多符合其需求的服务而获益,企业也因销售增长而获益。在企业所掌握的客户信息,尤其是以前购买行为的信息中,可能正包含着这个客户决定下一次购买行为的关键因素。数据挖掘可以帮助企业寻找影响客户购买行为的因素。

(3)客户保持

现在各个行业的竞争都越来越激烈,企业获得新客户的成本正不断地上升,因此保持原有客户就显得越来越重要。

客户分为3类:第一类是无价值或低价值的客户;第二类是不会轻易走掉的有价值的客户;第三类是不断地寻找更优惠的价格和更好服务的有价值的客户。传统的市场活动是针对前两类客户的,而现代客户关系管理认为,特别需要用市场手段来维护的客户是第三类客户,这样做会降低企业运营成本。数据挖掘可以发现易流失的客户,企业就可以针对客户的需求,采取相应措施。

(4)一对一营销

一对一营销不只是每逢客户生日或纪念日时给他寄一张贺卡。在科技发展的今天,每个人都可以拥有一些自己独特的商品或服务,比如按照自己的尺寸做一套很合身的衣服,但实际上市场营销不是裁衣服,你可以知道什么样的衣服合适顾客,但你永远不会知道什么股票适合你的顾客。CRM系统可以把大量的客户分成不同的类,在每个类里的客户拥有相似的属性,而不同类里的客户的属性也不同。最简单的分类方法即把所有客户分成两类:男性和女性。企业可以做到给这两类客户提供完全不同的服务来提高客户的满意度。

4结束语

“谁拥有客户信息,谁就拥有未来”。在企业管理客户生命周期的各个阶段都会用到数据挖掘技术。数据挖掘能够帮助企业确定客户的特点,从而可以为客户提供有针对性的服务。通过数据挖掘,可以发现购买某一商品的客户的特征,从而可以向那些也同样具有这些特征却没有购买的客户推销这个商品;若找到流失的客户的特征,就可以在那些具有相似特征的客户还未流失之前,采取针对性的措施。在企业CRM中有效利用数据仓库和数据挖掘技术,可以为企业高层决策者提供准确的客户分类、忠诚度、赢利能力及潜在用户等有用信息,指导他们制订最优的企业营销策略、降低银行运营成本、增加利润,加速企业的发展。(万方数据)


连环拆解商业销售管理软件
行销支持管理系统管理与营销管理的区别
电话行销支持管理系统必学的沟通技巧
行销支持管理系统可以选择的两条路
行销支持管理系统之父的行销支持管理系统技巧法则和规范
行销支持管理系统渠道管理相关的问题
行销支持管理系统渠道的绝招
行销支持管理系统团队的训练
信息发布:名易软件http://www.myidp.net